Abu Dhabi – The Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN), agreed and released by the Intergovernmental Panel on Climate Change (IPCC) on May 9 in Abu Dhabi, assesses existing literature on the future potential of renewable energy for the mitigation of climate change. It covers the six most important renewable energy technologies, as well as their integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.
The findings, from over 120 researchers working with the Intergovernmental Panel on Climate Change (IPCC) also indicate that the rising penetration of renewable energies could lead to cumulative greenhouse gas savings equivalent to 220 to 560 Gigatonnes of carbon dioxide (GtC02eq) between 2010 and 2050.
The upper end of the scenarios assessed, representing a cut of around a third in greenhouse gas emissions from business-as-usual projections, could assist in keeping concentrations of greenhouse gases at 450 parts per million. This could contribute towards a goal of holding the increase in global temperature below 2 degrees Celsius – an aim recognized in the United Nations Climate Convention’s Cancun Agreements.
The findings, launched May 9 after being approved by member countries of the IPCC in Abu Dhabi, United Arab Emirates, are contained in a Summary for Policymakers of the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN). The summary is a short version of roughly a thousand page comprehensive assessment compiled by over 120 leading experts from all over the world for IPCC’s Working Group III.
“With consistent climate and energy policy support, renewable energy sources can contribute substantially to human well-being by sustainably supplying energy and stabilizing the climate,” said Professor Ottmar Edenhofer, Co-Chair of Working Group III at the report launch. “However, the substantial increase of renewables is technically and politically very challenging,” he added.
Youba Sokona, Co-Chair of the Working Group III, said, “The potential role of renewable energy technologies in meeting the needs of the poor and in powering the sustainable growth of developing and developed economies can trigger sharply polarized views. This IPCC report has brought some much needed clarity to this debate in order to inform governments on the options and decisions that will be needed if the world is to collectively realize a low carbon, far more resource efficient and equitable development path.”
Ramon Pichs, Co-Chair of the Working Group III, added, “The report shows that it is not the availability of the resource, but the public policies that will either expand or constrain renewable energy development over the coming decades. Developing countries have an important stake in this future – this is where most of the 1.4 billion people without access to electricity live, yet also where some of the best conditions exist for renewable energy deployment.”
Also speaking at the launch, Rajendra Pachauri, Chairman of the IPCC, said, “The IPCC brought together the most relevant and best available information to provide the world with this scientific assessment of the potential of renewable energy sources to mitigate climate change. The Special Report can serve as a sound knowledge basis for policymakers to take on this major challenge of the 21st century.”
The report will feed into the broader work of the IPCC as it prepares its Fifth Assessment Report (AR5). The AR5 Synthesis Report is scheduled for finalization in September 2014.
The SRREN, approved by government representatives from 194 nations, has reviewed the current penetration of six renewable energy technologies and their potential deployment over the coming decades.
The six renewable energy technologies reviewed are:
- Bioenergy, including energy crops; forest, agricultural and livestock residues and so-called second generation biofuels
- Direct Solar Energy, including photovoltaics and concentrating solar power
- Geothermal Energy, based on heat extraction from the Earth’s interior
- Hydropower, including run-of-river, in-stream or dam projects with reservoirs
- Ocean Energy, ranging from barrages to ocean currents and ones which harness temperature differences in the marine realm
- Wind Energy, including on- and offshore systems
Over 160 existing scientific scenarios on the possible penetration of renewables by 2050, alongside environmental and social implications, have been reviewed with four analyzed in-depth. These four were chosen in order to represent the full range. Scenarios are used to explore possible future worlds, analyzing alternative pathways of socio-economic development and technological change. The researchers have also studied the challenges linked to how renewable energy can be integrated into existing and future energy systems including electricity grids and likely cost benefits from these developments.
While the scenarios arrive at a range of estimates, the overall conclusions are that renewables will take an increasing slice of the energy market.
The most optimistic of the four in-depth scenarios projects renewable energy accounting for as much as 77 percent of the world’s energy demand by 2050, amounting to about 314 of 407 Exajoules per year. As a comparison, 314 Exajoules is over three times the annual energy supply in the United States in 2005, which is also a similar level of supply on the Continent of Europe, according to various government and independent sources.
77 percent is up from just under 13 percent of the total primary energy supply of around 490 Exajoules in 2008. Each of the scenarios is underpinned by a range of variables such as changes in energy efficiency, population growth and per capita consumption. These lead to varying levels of total primary energy supply in 2050, with the lowest of the four scenarios seeing renewable energy accounting for a share of 15 percent in 2050, based on a total primary energy supply of 749 Exajoules.
While the report concludes that the proportion of renewable energy will likely increase even without enabling policies, past experience has shown that the largest increases come with concerted policy efforts.
Though in some cases renewable energy technologies are already economically competitive, the production costs are currently often higher than market energy prices. However, if environmental impacts such as emissions of pollutants and greenhouse gases were monetized and included in energy prices, more renewable energy technologies may become economically attractive.
For most of them, costs have declined over the last decades and the authors expect significant technical advancements and further cost reductions in the future, resulting in a greater potential for climate change mitigation.
Public policies that recognize and reflect the wider economic, social and environmental benefits of renewable energies, including their potential to cut air pollution and improve public health, will be key for meeting the highest renewables deployment scenarios.
Increasing the share of renewables requires additional short-term and long-term integration efforts. Studies clearly show that combining different variable renewable sources, and resources from larger geographical areas, will be beneficial in smoothing the variability and decreasing overall uncertainty for the power system.
There is a need for advanced technologies to optimize the infrastructure capacity for renewables. Additionally, there is a need for balancing supply and demand, like advanced demand and supply forecasting and plant scheduling.
“What is unique about this assessment is that the IPCC allows us to draw on and bring together a broad spectrum of experts on each of the technologies reviewed in collaboration with scientists studying energy systems as a whole. It represents a systemic, broad, impartial and state of knowledge report on the present and future potential of a low carbon, more resource efficient energy path,” says Professor Edenhofer.