- The main component of natural gas, methane, is a more potent greenhouse gas than carbon dioxide. During production and distribution, some methane inevitably escapes into the atmosphere. The researchers considered both high and low estimates for this so-called fugitive methane. Even at the lower end, fugitive methane adds to climate change.
The combined effect of the three, the scientists found, is that the global energy system could experience unprecedented changes in the growth of natural gas production and significant changes to the types of energy used, but without much reduction to projected climate change if new mitigation policies are not put in place to support the deployment of renewable energy technologies.
“Abundant gas may have a lot of benefits – economic growth, local air pollution, energy security, and so on. There’s been some hope that slowing climate change could also be one of its benefits, but that turns out not to be the case,” said McJeon.
Scientists, engineers and economists from the following institutions contributed to the research: the JGCRI, a collaboration between PNNL and the University of Maryland, BAEconomics, the International Institute for Applied Systems Analysis, the Potsdam Institute for Climate Impact Research, the Centro Euromediterraneo sui Cambiamenti Climatici, and Resources for the Future.
PNNL researchers on this project were supported by the Global Technology Strategy Project, a public-private partnership.
Details of the Research:
Haewon McJeon, Jae Edmonds, Nico Bauer, Leon Clarke, Brian Fisher, Brian P. Flannery, Jérôme Hilaire, Volker Krey, Giacomo Marangoni, Raymond Mi, Keywan Riahi, Holger Rogner, Massimo Tavoni. Limited Impact on Decadal-scale Climate Change from Increased Use of Natural Gas. Nature October 15, 2014, DOI: 10.1038/nature13837.
Source: PNNL.